A proper protection against transient overvoltages needs a good coordination between SPDs. ATLINK inductors provide decoupling between SPDs when they are connected in parallel at a same line. Thus, each one acts at the right moment, achieving the double objective: withstanding the lightning current and reducing the overvoltage to an acceptable level for the connected equipment.

One ATLINK is needed for each line and another for neutral. For their selection, the line working current must be taken into account, since this current will flow continuously through the device.

Its coordination capability has been tested and certified using lightning wave 10/350µs according to IEC61312-3.

- Allows the installation of SPDs of different classes in the same place, since the inductor substitutes the necessary length of cable for SPD coordination.
- Robust connectors, suitable for all kind of connections.

ATLINK devices have been tested in official, independent laboratories, verifying their working for a proper SPD coordination.

INSTALLATION

ATLINK inductors are to be installed in series with the LV power supply line, that is, cutting the line and connecting the obtained cable ends to the input and output connectors of the ATLINK. One ATLINK is needed for each line and another one for the neutral. There is no ground connection.

The power should be disconnected during the installation of the SPD. Coordinates mainly ATSHOCK with ATSUB and/or ATCOVER surge protective devices when they cannot be separated by a cable at least 10 meters long.
Reference

<table>
<thead>
<tr>
<th>ATLINK 35</th>
<th>ATLINK 63</th>
</tr>
</thead>
</table>

Protection categories according to RBT2002:
- AT8435: ATLINK 35: lines with $I_N \leq 35A$
- AT8463: ATLINK 63: lines with $I_N \leq 63A$

Type of tests according to IEC61312-3:
- SPD coordination

Working current:
- $I_N \leq 35A$
- $I_N \leq 63A$

Nominal voltage:
- $U_N 230V_{AC} (L-N)$
- $230V_{AC} (L-N)$

Maximum continuous operating voltage:
- $U_C 255V_{AC} (L-N)$
- $255V_{AC} (L-N)$

Nominal frequency:
- 50/60Hz
- 50/60Hz

Coordination maximum current (8/20µs):
- $I_{max} 100 kA$
- $100 kA$

Coordination impulse current (10/350µs):
- $I_{imp} 100 kA$
- $100 kA$

Inductance:
- $L 15 \mu H$
- $15 \mu H$

Resistance:
- $U_p 3m\Omega$
- $3m\Omega$

Backup fuse (1):
- 35A gL/gG
- 63A gL/gG

Maximum short-circuit current:
- 25kA (for maximum fuse)

SPD location:
- Indoor
- Series (two ports)

Type of connection:
- Fixed

Working temperature:
- -55°C to +85°C
- -55°C to +85°C

Dimensions:
- 71 x 86 x 63mm (4 mod. DIN43880)
- 71 x 86 x 63mm (4 mod. DIN43880)

Fixing:
- DIN rail

Enclosure material:
- Polycarbonate

Enclosure protection:
- IP20

Insulation resistance:
- $> 10^{14}\Omega$

Autoextinguish enclosure:
- V-0 Type according to UNE-EN 60707 (UL94)

Connections Input/Output:
- Max/Min section multi-stranded: 16 / 45mm² (5/1 AWG)
- Max/Min section single-stranded: 4 / 45mm² (11/1 AWG)

Certificated tests according to: IEC 61312-3

Relevant standards:
- UNE21186 / NFC 17102 / UNE21185 / IEC61024-1 / IEC61312-3

(1) Needed in cases where there is no equal or less nominal current installed “upstream” from the protector